Enhancing Genome-Enabled Prediction by Bagging Genomic BLUP

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Genome-Enabled Prediction by Bagging Genomic BLUP

We examined whether or not the predictive ability of genomic best linear unbiased prediction (GBLUP) could be improved via a resampling method used in machine learning: bootstrap aggregating sampling ("bagging"). In theory, bagging can be useful when the predictor has large variance or when the number of markers is much larger than sample size, preventing effective regularization. After present...

متن کامل

DAIRRy-BLUP: a high-performance computing approach to genomic prediction.

In genomic prediction, common analysis methods rely on a linear mixed-model framework to estimate SNP marker effects and breeding values of animals or plants. Ridge regression-best linear unbiased prediction (RR-BLUP) is based on the assumptions that SNP marker effects are normally distributed, are uncorrelated, and have equal variances. We propose DAIRRy-BLUP, a parallel, Distributed-memory RR...

متن کامل

Genomic BLUP decoded: a look into the black box of genomic prediction.

Genomic best linear unbiased prediction (BLUP) is a statistical method that uses relationships between individuals calculated from single-nucleotide polymorphisms (SNPs) to capture relationships at quantitative trait loci (QTL). We show that genomic BLUP exploits not only linkage disequilibrium (LD) and additive-genetic relationships, but also cosegregation to capture relationships at QTL. Simu...

متن کامل

GENOMIC SELECTION DAIRRy-BLUP: A High-Performance Computing Approach to Genomic Prediction

In genomic prediction, common analysis methods rely on a linear mixed-model framework to estimate SNP marker effects and breeding values of animals or plants. Ridge regression–best linear unbiased prediction (RR-BLUP) is based on the assumptions that SNP marker effects are normally distributed, are uncorrelated, and have equal variances. We propose DAIRRy-BLUP, a parallel, Distributed-memory RR...

متن کامل

Effect of BLUP prediction on genomic selection: practical considerations to achieve greater accuracy in genomic selection

Background Prediction of breeding values (BV) using only genotypic information is the final goal of Genomic Selection (GS) [1]. Commonly, BV prediction from traditional BLUP analysis is the input for constructing GS prediction models, and GS predicted BVs are correlated with traditional BLUP BVs to estimate the accuracy of GS models. The use of GS in plant breeding depends on the accuracy of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLoS ONE

سال: 2014

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0091693